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Photoelectron angular distributions are calculated for the valence shell ionization of heteroaromatic molecules
of pyridine, pyrazine, pyrimidine, pyrrole, and furan by the continuum multiple scattering XR method. The
asymmetry parameters exhibit strong energy dependences in ionization fromπ orbitals but are almost invariant
in ionization fromσ orbitals, in good agreement with experimental results. The asymmetry parameters in
ionization from nonbonding orbitals appear generally higher than those in ionization from bonding orbitals.
These features are interpreted in terms of the Coulomb phase and photoelectron angular distribution in the
molecular frame.

1. Introduction

The one-photon ionization of randomly oriented molecules
with linearly polarized light provides a photoelectron angular
distribution characterized by a single asymmetry parameter
â(E)(-1 e â(E) e 2).1 This parameter varies with photoion-
ization excess energy depending on the nature of the ionized
orbital. For instance,â gradually increases with energy in
ionization from π orbitals, but it stays almost constant in
ionization fromσ orbitals. Although this empirical relation has
helped assigningπ andσ bands2-6 in ultraviolet photoelectron
spectroscopy (UPS), the origins of such energy dependences
have not been elucidated. In this work, we theoretically studied
the energy dependence of asymmetry parameters in the photo-
ionization of heteroaromatic molecules withπ, σ, and n
(nonbonding) electrons. These molecules can also be considered
as models of more complex systems of DNA bases7 that are
interesting from a biological viewpoint.

Computational demands are obstacles for detailed studies on
photoionization dynamics of polyatomic molecules. To over-
come the difficulty and facilitate the analysis, we employ the
continuum multiple scattering (CMS) XR method using muffin-
tin potentials for calculating electron scattering waves in the
molecular frame (MF). Although the CMSXR method may be
less accurate than theR-matrix8 and Schwinger variational
methods,9 previous studies have shown that asymmetry param-
eters calculated by the CMSXR method agree with experimental
values within 0.3 for linear molecules10-13 and benzene.14 That
level of accuracy would be sufficient for the present study to
elucidate differences in ionization fromσ (n) andπ orbitals
semiquantitatively.

Heteroaromatic molecules of pyrazine, pyrimidine, pyridine,
furan, and pyrrole are planar with three doubly occupiedπ
orbitals. In the present work, we focus on three types of orbital
that correlate with the 1e1g(π), 3e2g(σ), and 3e1u(σ) orbitals in
benzene to examine the energy dependences of photoionization
asymmetry parameters for these types of orbital systematically.
We do not consider orbitals that largely deviate in shape from
those in benzene, as their characteristics are determined for some
additional factors in individual cases.

2. Theory

The differential cross section in photoionization of an
isotropic ensemble of molecules by linearly polarized light takes
the following form1

whereσ(E) is an integral cross section,â(E) is an asymmetry
parameter,PK(x) is the Legendre polynomial of theKth order,
andθk is the angle between the photoelectronk-vector and the
polarization direction of light. The differential cross section can
be expanded in terms of transition dipole momentsIlmµ(E)15 as

wherea is the fine-structure constant,pω is the photon energy,
(l,m) are the angular momentum quantum numbers of a partial
wave, µ is the index for the dipole moment direction in the
molecular frame,ηl(E) is the Coulomb phase shift, and
(l1m1l2m2|LM) and{:::} are the Clebsch-Gordan coefficient and
Wigner 6j-symbol, respectively. Comparing eqs 1 and 2, an
asymmetry parameter is expressed as13,15
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djtmtl(E) is called the reduced amplitude. The energy dependence
of â(E) arises from the variation in the transition dipole moments
(defined as complex values including dynamical phase shifts)
and the difference in generic Coulomb phases,ηl(E) - ηl′(E).
The latter takes the simple form16

wherek ) x2E is the wave number of a photoelectron andE
is the photoionization excess energy (E ) pω - IE). The
Coulomb phase difference between the partial waves varies
rapidly in the low-energy region up to ca. 5 eV, ask appears as
a denominator in (6). Equation 3 can be expanded in terms of
the Coulomb phase as10

whereAl(E) and¥l-l+ (E), l( ) l ( 1, are the real functions of
energy. We used the selection rule of the Clebsch-Gordan
coefficient in (4) to obtain (8). Note that the parameters in (7)
lack the index of the magnetic quantum number and, therefore,
are invariant under the rotation of molecular axes. This axis
independence allows an arbitrary choice of the molecularz-axis
in treating nonlinear molecules with various symmetries. On
the basis of transferred angular momentum formalism,17,18 A0

can be written as

with parity-favored (σf) and parity-unfavored (σu) terms,

and

In contrast to atoms,1 there are parity-unfavored terms in eq 9,
by which A0(E) can be negative for molecules.A0(E) can take
limiting values 2 and-1 in restrictive situations. From eqs 9
and 13, we can see that the condition forA0 ) 2 is Sjtl ≡ 0 for
all (jt, l) exceptS01 and that forA0 ) -1 is Sjtjt(1 ≡ 0 for all jt.
There is a familiar example of the former, i.e., the atomic nsf
kp ionization. Those limiting cases are not likely for polyatomic
molecules, especially the latter case.

Al(E), l g 1, is described as the magnitude of an interference
term between the channels with angular momentuml - 1 (kl-)
and l + 1 (kl+) and written as

Because the numerator of this equation can be recognized as
an inner product, the upper bound forAl(E) can be derived by
the inequality|a‚b* | e |a|b|.

which clearly indicates thatAl(E) approaches zero when the
ionization into eitherkl- or kl+ continuum becomes negligible.

2.1. Eigenchannel and Eigenphase.In the one-electron
approximation, a transition dipole moment is given by

whereψlm
- is the S-matrix-normalized continuum wave func-

tion obtained by the CMSXR method15 and φ0 is an ionized
one-electron orbital. The asymptotic form ofψlm

- is

where theSlml′m′ is the element of theS matrix and the angles
θ and φ are defined in the molecular frame. The continuum
wave function around the shape resonance is analyzed using
the eigenphase and eigenchannel formalism. The eigenphases
δγ are obtained by diagonalizing theS matrix as

where U is the unitary matrix, which consists of column
eigenvectors of theS matrix, andδ is the diagonal eigenphase
matrix.

Eigenchannel wave functions are obtained by the unitary
transformation of theS-matrix-normalized wave functions. The
asymptotic eigenchannel functions are expanded by phase-
shifted Coulomb wave functions19,20 as

The eigenchannel wave functions (20) are energy-normalized
in Rydberg units.20 In general, the sum of eigenphases changes
by π when passing through a resonance. If a single eigenphase
changes byπ, the associated eigenchannel wave function
represents a resonant state.19

2.2. One-Axis Model.When ionization occurs only through
the transition dipole moment along a certain axis in the
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molecular frame, the laboratory frame (LF) and molecular frame
(MF) PADs are simply related. If the ionization dipole moment
is along the molecularz-axis, the following relation holds

whereδ0µ is the Kronecker delta. The corresponding MF-PAD
is written as

Substituting (22) into (4) and comparing that with the MF-PAD
formula by Dill,21 we obtain the asymmetry parameter in the
laboratory frame to be

The convolution of (23) with the alignment function of a
molecule also leads to the same equation (Appendix). The factor
2/x5 comes from the axis alignment parameter. In (24), theâ
values are 2 and-1 for â20

MF/â00
MF ) x5 and-x5/2, respec-

tively. The x5 and-x5/2 correspond to unrealistic extreme
cases where MF-PAD becomes aδ function. In other words,â
never actually reaches the upper (â ) 2) or lower (â ) -1)
bound in this one-axis model.

2.3. Details of Calculation.Bound state molecular orbitals
were calculated using the GAMESS package22 by the HF/4-
31G method. A parallel CMSXR code was written for con-
tinuum wave functions. A muffin-tin potential takes different
forms in three spatial regions: Region I denotes the inside of
the spheres centered at atomic nucleii. Region II denotes the
outside of region I and the inside of a large sphere around the
center of mass of a molecule. For region I, we used a touching
sphere model, which prevents the overlapping of atomic spheres,
with an experimentally determined molecular geometry14,23-28

and Slater’s XR potential with the parameterR ) 1.0. The
touching sphere model usually employsR ) 1.0; however,
0.83-0.93 have been found as the optimized values for
reproducing experimentally observedσ-type resonances in
diatomic molecules.10 The radii of spheres were determined as
follows: (1) Half of the chemical bond length is given to a
pair of atoms as the initial atomic radius. (CdC bonds were
chosen in the first step for benzene, pyrazine, pyrrole, and furan
and CdN bonds for pyridine and pyrimidine.) (2) The radii are
adjusted to achieve self-consistency to create contact between
spheres. The outside of region II is region III. The potential in
region III is a pure Coulomb potential with a unit charge13

located at the center of mass of a molecule. The resulting
parameters are listed in Table S1 (Supporting Information).

For a given photon energy, continuum wave functions are
evaluated usingK-matrix formalism, utilizing experimental
ionization potentials (see Table S2 in the Supporting Informa-

tion).2,14,29-35 Then, they are orthogonalized with fully occupied
orbitals. Partial wave expansion was truncated atlmax ) 5 (8)
in region I and atlmax ) 7 (10) in regions II and III forπ (σ
and n) ionization. To obtain converged differential cross
sections, higher angular momentum partial waves were required
for σ and n orbitals than forπ orbitals, because theσ and n
orbitals considered here have many angular nodes. The contri-
bution of the largest partial waves (l ) lmax) altersâ(E) by less
than 0.1 in ionization of the entire energy range, and especially
less than 0.01 forE < 10 eV. Therefore, the results are
particularly reliable forE < 10 eV. Because experimental
uncertainty in â(E) is (0.05-0.12,2-5 the convergence of
theoretical calculation is good enough to compare the calculated
â(E) with the experimental one. We followed an axis convention
by Mulliken.36

3. Results and Discussion

3.1. Correlation of Bound and Resonant Orbitals.We
considered ionization from orbitals that correlate with the
1e1g(π), 3e2g(σ), or 3e1u(σ) orbitals of benzene. We have
confirmed correlation of the orbitals between different molecules
from their symmetries and energies. Excluded from our discus-
sion are the pyrimidine 10a1 and 6b2 orbitals, and the pyridine
11b2 orbitals that were found to deviate substantially from the
benzene orbitals. The resulting 22 orbitals are summarized in
Table 1 and Figure S1 (Supporting Information).

Theσ andπ orbitals of planar molecules are categorized into
the a′ and a′′ symmetries in theCs point group, respectively.
For azabenzenes, the bonding orbitals with the a′ symmetry are
subdivided into nonbonding (n) orbitals that are mainly localized
around the nitrogen atoms and bonding (σ) orbitals that largely
constitute the six-membered aromatic ring framework. The
pyrazine 6ag and 5b1u orbitals, the pyrimidine 7b2 and 11a1
orbitals, and the pyridine 11a1 orbitals are n-orbitals. Note that
the π and σ orbitals are not significantly different from their
corresponding benzene orbitals, because the nitrogen atoms of
these heteroaromatic molecules are located on the nodes of the
π andσ electron wave functions.

Continuum wave functions with the a′ and a′′ symmetries
are denoted askσ and kπ, respectively. The resonance states
are indicated byσ* or π* . It is useful to examine the resonance
energies from the eigenphase sum in evaluating the quality of
muffin-tin potentials before performing time-consuming calcula-
tions of the transition dipole moments (16). If necessary the
model parameters can be adjusted so as to reproduce the known
resonance energies. A small difference inR parameters leads
to a noticeable difference in shape-resonance energies. CMSXR
calculations by Carlson et al. predicted sevenσ* and oneπ*
(b2g) resonance states for benzene14 (Table 2). On the other hand,
our calculations predict anotherπ* (b1g) state just above the
threshold, in addition to the eight states predicted by Carlson
et al.14 at almost the same positions. For heteroaromatic
molecules, there is no signature of the shape resonance with
theπ* state. Becauseπ* (b1g) andπ* (b2g) are inaccessible by

TABLE 1: Correlation of Bound State Orbitals a

type benzeneD6h pyrazineD2h pyrimdineC2V pyridineC2V pyrroleC2V furanC2V

π X 1e1g(zx) C 1b2g A 2b1 B 2b1 A 2b1 A 2b1

π X 1e1g(yz) A 1b1g C 1a2 A 1a2 X 1a2 X 1a2

σ A 3e2g(xy) D 3b3g X 7b2(n) C 7b2

σ A 3e2g(x2 - y2) X 6ag(n) B 11a1(n) X 11a1(n)
σ C 3e1u(x) B 5b1u(n)
σ C 3e1u(y) F 4b2u 6b2

a Nonbonding orbitals are indicated by (n). X denotes the ground state of a cation, while A-F are excited states from lower to higher.

Ilmµ ) Ilmµδ0µ (22)

dσ(E)

dΩ
) ∑
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âlm
MF(E) Ylm(θ,φ) (23)
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â00
MF(E)

(24)

404 J. Phys. Chem. A, Vol. 112, No. 3, 2008 Suzuki and Suzuki



dipole transitions from the ionized orbitals considered below,
these are unimportant in the present case.

3.2. 1e1g(π)-Type Ionizations. Figures 1 and 2 show the
calculatedâ(E) values for benzene, pyridine, pyrazine, pyrimi-
dine, pyrrole, and furan. These values agree rather well with
the experimental values, particularly up to ca.E ) 16 eV, except
for the pyridine 1a2: the asymmetry parameter experimentally
observed for the 1a2 band of pyridine seems to increase more
slowly than the calculation. However, this should be considered
carefully, as it is due at least in part to a signal contamination
of the 1a2 band with an overlapping 11a1 band (nonbonding
orbital).2 Above 16 eV, ourâ values appear systematically lower
than the experimental ones and those obtained by Carlson et
al.14

We have examined the dependence of calculatedâ(E) on a
basis set size by performing calculations at the 6-31G* level
for benzene. The muffin-tin potential (VII) calculated at the
6-31G* level was energetically lower than that of 4-31G by
VII

6-31G* - VII
4-31G ) -0.03 au on average. However, we found

that the 6-31G* muffin-tin potential provides the sameâ(E)
with the 4-31G case (Figure 1), suggesting that calculations are
converged for the basis set size.

A sharp increase ofâ(E) in the low-energy region is a
common feature of allπ orbitals of heteroaromatic molecules.
A similar feature was previously observed in ionization from
the π orbitals of small molecules,2-5 which was ascribed by
Thiel to the energy-dependent Coulomb phase.10 To examine
the Coulomb phase effect in the present case, we performed a
model calculation in whichâ(E) is extrapolated for different
energies considering only the energy dependence of the
Coulomb phase with a constantIlmµ(E), at E ) 0.1 eV. Figure
3a shows the thus-predicted asymmetry parameters (solid line).
The result shows that this simple model captures the uprising
features ofâ(E), supporting the notion presented by Thiel.

Although the importance of the Coulomb phase is quite
apparent, the experimental and calculatedâ(E) for π orbitals

Figure 1. Asymmetry parameters forπ electron ionization as functions
of excess energy. The highest occupiedπ orbitals are represented by
solid lines for the calculated values and by circles for the observed
ones, and the second occupiedπ orbitals by dashed lines and triangles,
respectively. Experimental values are taken from Carlson et al. (1987)
(O) and Baltzer (1997) et al. (b) for benzene and from Piancastelli et
al. (1983) for pyrazine and pyridine. The size of symbol represents the
typical experimental error inâ. Larger basis (6-31G*) results are
indicated by (square).

TABLE 2: Correlations of σ* Resonant States

type D6h D2h C2V Cs

1 e1u(x) b1u a1 a′
2 e1u(y) b2u b2 a′
3 b1u b1u a1 a′
4 e2g(x2 - y2) ag a1 a′
5 e2g(xy) b3g b2 a′
6 a1g ag a1 a′
7 a2g b3g b2 a′

Figure 2. Asymmetry parameters forπ electron ionization as functions
of excess energy. The highestπ orbitals are represented by solid lines
for the calculated values and by filled circles for the observed ones,
and the second highestπ orbitals by dashed lines and filled triangles,
respectively. Experimental values are taken from Piancastelli et al.
(1983) for pyrimidine and Holland et al. (2001) (filled symbol) and
Keller et al. (1984) (open symbol) for pyrrole and furan. The size of
symbol represents the typical experimental error inâ.

TABLE 3: Low-Energy Parameters for π Ionization E ) 0.1
eV

A0 A1 A2 ¥1,3 A3 A4

benzene 1e1g -0.38 0 0.53 0.91 0 0.00
pyridine 1a2 -0.34 0.00 0.53 0.89 0.02 0.00

2b1 -0.34 0.01 0.53 1.03 0.00 0.00
pyrazine 1b1g -0.38 0 0.50 1.02 0 0.00

1b2g -0.32 0 0.57 1.15 0 0.00
pyrimidine 2b1 -0.34 0.01 0.53 1.10 0.01 0.00

1a2 -0.34 0.00 0.54 1.05 0.01 0.00
pyrrole 1a2 -0.42 0.00 0.40 1.01 0.00 0.00

2b1 -0.32 0.01 0.40 1.13 0.01 0.00
furan 1a2 -0.39 0.00 0.37 1.07 0.00 0.00

2b1 -0.20 0.16 0.32 1.16 0.02 0.00
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(Figure 1) increase more rapidly thanâ(E) of the model (Figure
3a). As discussed for (5),â(E) can be expressed by the
parametersAl(E) and¥l-l+(E). A0(E) andA2(E) for benzene are
shown in Figure 3b,c (solid lines). Those parameters near the
ionization threshold have some common features: in ionization
from theπ orbitals of benzene and the heteroaromatics,A0(E)
is negative near the threshold (Table 3).A1 is strictly zero for
benzene and pyrazine for symmetry reasons, and it is nonzero
but small for other molecules. A major interference term arises
from A2. Further higher angular momentum partial waves
contribute less than 4% atE < 5 eV for benzene 1e1g, due to a
centrifugal barrier. An approximate formula for the asymmetry
parameter is, hence, obtained as

whereA2 is positive and¥1,3 ≈ 0.9-1.2 (Table 3). Although
eq 8 for ¥1,3(E) is complicated, the common feature ofâ(E)
suggests that there is a notable similarity between¥1,3(E) in
different systems. Because the ionized orbitals have similar
shapes, the similarity ofâ(E) imply the corresponding continuum
wave functions resemble to each other between different
systems.

Equation 25 is analogous to the Cooper-Zare formula for
atomic ndf kp,kf ionization, whereA0 is positive and¥1,3(0)
) 0.5 for Kr and Xe37 with a weak energy dependence. The
atomic¥1,3(E) is related to the difference in quantum defects
as limEf0¥1,3(E) ) δp - δf.38 Although the interpretation of
the molecular¥l-l+(E) is not as simple as that in atomic cases,
¥1,3(E) is found to be almost invariant with energy in ionization
from π orbitals.

BecauseA2(E) and ¥1,3(E) do not vary rapidly in the low-
energy region, the negative and uprisingA0(E) (Figure 3b, solid
line) is the second origin of the rapid increase ofâ(E) for π
orbitals. Then, why doesA0(E) start from a negative value and
increases with energy? Theπ orbitals considered in this study
are approximated by an atomic 3d orbital, in a united atom
picture, as shown in Figure 1, 2, or S1 (Supporting Informa-
tion): for instance, the benzene 1e1g(zx) orbital is similar to
3dzx. The kp andkf continua are reached by dipole transition
from an atomic d orbital. We can treat those two continua
separately, becauseA0(E) of eqs 9 and 13 does not have any
interference term betweenkp andkf.

First, we consider thekp continuum. There are two compo-
nents,kpx andkpz, which can be accessed by the dipole transition
with polarization alongzandx axis, respectively. In either case,
sin 2(θk) distribution and negativeA0(E) are observed. CMSXR
calculation shows that the parital cross section forkpz is more
than 6 times smaller than forkpx at E ) 0.1 eV; i.e., the
photoelectron is more ejected in the molecular plane than in
perpendicular direction to it. If we neglect the small contribution
of ionization intokpz continuum, we are able to apply one-axis
model to evaluateA0(E)

where -1/x5 is the molecular frame anisotropy parameter,
â20

MF/â00
MF, for the photoelectron angular distribution dσ/dΩ ∝

sin2 (θ̃k) cos2 (φ̃k). When the contribution ofkpz increases for
higher excess energy, bothkpx andkpz channels must be taken
into account. Their interference effect can give rise to a positive
A0(E). For instance, theA0(E) is 0.2 for spherical potential,
which can be derived from the Cooper-Zare formula:1

where only the ionization fromd(l)2) to kp is assumed.
We have found that the ionization into thekf continuum also

provides negative contribution toA0(E) near threshold and
positive contribution atE > 4 eV, though the angular distribu-
tions of the component of thekf continuum wave functions have
complicated structure.

Ionization from the 1e1g orbital of benzene exhibits a small
dip in â(E) due to shape resonance atE ) 5 eV (Figure 1). The
appearance of shape resonance inâ(E) has been observed for
ionization from theπ orbitals of small molecules.4 For benzene,
because we take into account partial waves of up tolmax ) 7,
seven e1u(x) eigenchannels exist. To identify which of these is
in resonance, we examined the eigenphases ofke1u continuum
wave functions shown in Figure 4. One of the eigenchannels
exhibits a rapid change in phase at approximately 5 eV,
indicating that this channel is solely responsible for the shape
resonance. Figure 5 shows this particular eigenchannel wave
function êγ(r,θ,φ,k) of benzenekσ*e1u(x) continuum in the (a)
off-resonance and (b) on-resonance. The maximum amplitude
of this wave function in the molecular plane is approximately
|êγ| ) 0.14 au at 4.9 eV and reaches 0.68 au on resonance. The
effects of thekσ*e1u(x) shape resonance onâ(E) and the integral
cross section are rather weak, because the transition dipole from
the π orbital to the σ* orbital is small. Also note that the
interference term (∆l, ∆m ) 0, (1, (2) in eq 2 is expected to
be small in this case, because the background states consist of
m ) 0 and 1, whereas the resonance state is ofm ) 5, as seen
in Figure 5a. The cross terms ofm and m′ have to share the

Figure 3. (a) Asymmetry parameter by model calculations, where
transition dipole moments are fixed atE ) 0.1 (marked with triangles),
(b) A0(E) for the benzene orbitals, and (c)A1(E) for the 3e1u orbital
andA2(E) for the 3e2g and 1e1g orbitals of benzene.

â(E) ≈ A0 - A2 cos(η1(E) - η3(E) + ¥1,3π) (25)

A0(E) ) 2

x5
× -1

x5
) -0.4 (26)

A0(E) )
(l - 1)
2l + 1

) 0.2 (27)
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samemt due to Clebsch-Gordan coefficients, (1-µ lm|jtmt) and
(1-µ′ l′m′|jtmt) of eq. 2, whilemt differs by µ andµ′ from m
andm′, respectively. Hence, the|m-m′| of non zero terms are
equal to|µ-µ′| e 2. Because the maximum amplitude of the
σ* wave function is in the molecular plane,π f σ* resonance
provides electrons ejected perpendicular to the light polarization
and reducesâ(E). For heteroaromatic molecules, such singu-
larities are seen for orbitals correlated with 1e1g(yz), i.e., 1b1g

of pyrazine and 1a2 of C2V molecules (Figures 1 and 2). As will
be discussed in the next section, thekb1u (1) resonance state of
pyrazine has a large contribution from a single eigenchannel.
The shape of the wave function is presented in Figure 5c. In
contrast, the dips are almost invisible in ionization from orbitals
correlated with benzene 1e1g(xz).

3.3. 3e2g(σ,n)-Type Ionizations.The upper panels of Figure
6a-d show asymmetry parameters in the 3e2g(σ) ionization of
benzene and similar ionization processes in azabenzene. These
curves exhibit common features ofâ(E) varying in the narrow
range of-0.33e â e 1.0 (calculations) and-0.25e â e 0.5
(experiments), regardless of the orbital character (σ or n).
Features due to shape resonance are similar, although the
resonance energy shifts in the order pyrazine∼ pyrimidine <
pyridine< benzene. Only three resonance states of1, 2, and3
in Table 2 are symmetry-allowed for benzene and pyrazine,
whereas all six states are possible for molecules with theC2V
symmetry. A number of resonances cause an irregular variation
in â(E) in ionization from pyrimidine 7b2. â(E) values near the
threshold are quite similar between benzene and heteroaromatics.
The calculatedâ is somewhat larger than the observedâ. It is
noted that the vibrational motion of a molecule is completely
neglected in the calculation, and the resonance energy, peak-
height andâ(E) will vary with nuclear displacements, which
might reduce the calculated energy dependence ofâ(E). On the
other hand, the kinetic energy resolution in experiments was in
the range of 50 meV to 0.2 eV,2-5 andâ(E) was averaged over
kinetic energies with a typical bandwidth of 0.5 eV (fwhm).2-5

Such averaging may flatten the structure in observedâ(E).
The energy dependence ofâ(E) up toE ≈ 2 eV is explained

by the Coulomb phase (Figure 3a). The relevant parameters for
eq 25 are listed in Table 4. Above 2 eV, one important difference
from π ionization is rapidly decreasingA2(E) (Figure 3c, dashed
line). This change masks the energy variation of the Coulomb
phase. The decrease ofA2(E) can be understood from eq 15

and the shape resonance of1 or 2 at E ≈ 7 eV, whose wave
function dominantly consists ofl ) 5 (Figure 5b). In this
situation, the ionization into bothkp andkf continuum becomes
negligible, and henceA2(E) approaches zero, due to eq 15.

In the 3e2g-type ionization, kσ channels (Figure 6) are
accessible via two axes in the molecular plane. As shown in
Table 5, when the partial cross section of one axis exceeds 80%
of the integral cross section, eqs 3 and 24 can predictâ(E) within
an error of(0.2. The peak ofâ(E) slightly shifts in energy
from the resonance position as a result of the interference
between resonance-mediated ionization and direct ionization.

Figure 4. ke1u eigenphase of benzene. Seven e1u channels exist under
the condition oflmax ) 7, but three of them are constantly close to
zero. The solid triangle represent the points referred to in the Figure 5.

Figure 5. ke1u eigenchannel wave functions in molecular plane (Z )
0) for benzene (a, b) and eigenchannel wave function of resonantkb1u

state for pyrazine (c). The photonelectron kinetic energies are (a) 4.9
eV (off resonance), (b) 6.9 eV (on resonance), and (c) 5.7 eV. The
ranges of contours are (a)( 0.10, (b)(0.45, and (c)(0.45 with 0.05
spacings. Solid, dashed, and dot-dashed lines represent positive,
negative, and zero values, respectively. Green points represent atomic
positions.
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We may examine the validity of one-axis approximation from
the ratio of the partial cross section for ionization via a certain
axis to the total,F (% in Table 5). An experimental assessment
of the one-axis model is possible through the measurement of
photoionization probability for aligned ensemble of molecules.
For these experiments, we previously definedbKLkγΛp coef-
ficients,39 by which F can be written as

whereX, Y, andZ denote the axis of ionization in the molecular
frame. ThebKLkγΛp coefficient can be observed by time-resolved
photoelectron spectroscopy40 or IR + VUV two-photon ioniza-
tion spectroscopy,41 where the first infrared light creates the
aligned neutral molecules in the vibrationally excited state. There
are also calculations ofF but in different form. Wallace and
Dill 42 defined the same value by another parameter as

where theân̂ varies from-1 to 2, whereasF changes from 0 to
1 correspondingly. Lucchese et al. have found thatân̂ reaches

2 in a photoionization of N2 molecules by the Schwinger
variational method,43 where a one-axis model is certainly
applicable.

In section 2.2, we have mentioned that when the one-axis
approximation is applicable,â(E) hardly reaches the limiting
values,-1 or 2. Even so, the values listed in Table 5 are
remarkably close to zero (-0.19-0.65). This can be understood
from the shape ofkσ* resonant wave functions. The ionization
from σ to kσ* is only allowed via the transition dipole that is
in the molecular plane. Then, the photoelectrons are ejected in
the molecular plane but not specifically to parallel or perpen-
dicular direction to the dipole, because thekσ* wave functions
do not have specific direction in the molecular plane as
illustrated in Figure 5b,c. Those rather isotropic wave functions
result in theâ(E) ≈ 0.

It is difficult to distinguish betweenσ and n orbitals by
â(E), especially betweenE ) 2 and 15 eV. However, the
maximum of the partial cross section atE ≈ 5 eV is smaller
for n f kσ than forσ f kσ (Figure 6). This difference arises
from the shapes of wave functions. As an example, a resonant
eigenchannel wave function of pyrazinekb1u[σ*(1)] is shown
in Figure 5c. There is a difference between the benzeneke1u(x)
orbital and the pyrazinekb1u orbital in that the C-H* character
is lacking in the latter, which reduces the transition dipole
moment for nf σ*(1) ionization.

3.4. 3e1u(σ,n)-Type Ionizations. â(E) values in ionization
from benzene 3e1u and related orbitals exhibit similar features

Figure 6. Asymmetry parameters and partial cross sections as functions
of photoelectron kinetic energy for benzene 3e2g(xy), and corresponding
orbitals of pyrazine, pyridine, and pyrimidine (solid lines), and
corresponding orbitals of benzene 3e2g(x2 - y2) (dashed line) [upper
panels]. Experimental values are cited from Carlson et al. (1987) (O)
and Baltzer (1997) et al. (b) for benzene and from Piancastelli et al.
(1983) for pyrazine 6ag (b), pyridine 11a1 (b), and pyrimidine 11a1
(b) and 7b2 (O). The size of symbol represents the typical experimental
error in â. Partial channel cross section (σ,n f kσ) was divided by
degeneracy,g ) 4 for e2g, g ) 2 for the other orbitals [lower panels].
The numbers indicate the resonant states listed in Table 2.
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TABLE 4: Major Al and ¥l-l+ Values at E ) 0.1 eV for
Benzene 3e2g and Related Ionizations

orbital A0 A2 ¥1,3

σ
benzene 3e2g 0.60 0.90 1.00
pyridine 7b2 0.50 0.91 0.98
pyrazine 3b3g 0.44 0.95 0.95

n
pyridine 11a1 0.76 0.56 1.11
pyrazine 6ag 0.86 0.72 1.07
pyrimidine 7b2 0.63 0.64 1.24
pyrimidine 11a1 0.68 0.65 1.00

TABLE 5: One-Axis Approximation near Resonance
Energies in σ Ionization

φ0 E (eV) axisa % typeb Γ c 2â20
MF / x5â00

MF âd

pyrazine 6ag 4.85 Y 92 2 b2u 0.21 0.29
7.35 Z 82 3 b1u 0.38 0.53

3b3g 6.1 Y 89 1 b1u -0.12 -0.13
4.85 Z 52 2 b2u 0.35 -0.16

5b1u 3.85e Z 28 4 ag 0.06 0.51
4.1 Y 67 5 b3g 0.27 0.46
10.1 Y 49 7 b3g 0.15 0.11

4b2u 3.85e Z 42 5 b3g -0.17 0.17
6.6 Y 84 6 ag 0.35 0.15
10.1 Z 67 7 b3g 0.65 0.36

pyrimidine 11a1 5.1 Z 93 1 a1 -0.19 -0.08
8.1 Z 57 3 a1 0.35 0.55

7b2 5.35 Y 72 1 a1 -0.04 -0.01
10.6e Z 36 6 b2 0.23 0.51

pyridine 11a1 5.6 Y 79 2 b2 0.20 0.09
7.85 Z 73 3 a1 0.24 0.30

7b2 3.1 Y 76 1f a1 -0.04 0.20
5.6 Z 53 2 b2 0.43 -0.07
7.85 Y 82 1 a1 0.14 0.15

6b2 4.60e Z 25 5 b2 -0.05 0.45
8.10 Y 83 6 a1 0.38 0.26
10.85 Z 49 7 b2 0.53 0.36

a Molecular axis with largest cross section.b Type of resonance state
in Table 2.c Symmetry of continuum wave function, which satisfies
Γφ0 X Γaxis x Γk 3 ΓA. d Present CMSXR calculation.e Peak position
of partial cross section.f At low-energy side of resonance1.
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(upper panels of Figure 7a-d). They exhibit their maxima near
the threshold and their minima at approximatelyE ) 10 eV,
and gradually increase beyond. In contrast to those of the
previous two types of orbital,â(E) is always positive in the
entire range, except for the value for ionization from the pyrazine
5b1u orbital atE ) 10 eV. Peak positions in the calculatedâ(E)
curves are shifted lower in the order of pyrazine 4b2u < pyridine
6b2 < benzene 3e1u, reflecting their resonance energies.

Figure 3a (dot-dashed line) shows that the Coulomb phase
primarily controls the energy variation ofâ(E) only near the
threshold (E < 1 eV) with the following formula:

where the parameters are listed in Table 6.A0 is close to the
value for 3e2g-type ionization (Table 6). The difference inâ(E)
from 3e2g-type ionization arises from the phase shift¥0,2 ≈ 0.5,
from which the sine form of eq 30 is obtained. The energy
variation ofA1(E) is far larger than that of the Coulomb phase
at higher energyE > 2 eV (Figure 3c, dot-dashed line). The
decreasingAl(E) is caused by the relative reduction of theks
and kd partial cross sections to the total, through the eq 15.

The partial cross secition ofks andkd is more than 95% at the
ionization threshold but ca. 30% atE ≈ 7 eV, because the wave
functions of the lowest resonance states (4 or 5) have mainly
high orbital angular momentum ofl ) 4. Table 6 shows a little
difference between theσ and n orbitals, where the partial cross
section of nf kσ ionization is 3-4 times smaller than that of
σ f kσ ionization (Figure 7) atE ) 0.1 eV, due to a small
transition dipole from the n state to the broadσ*(6, C-H*)
resonant state.

Above 10 eV, the calculatedâ(E) of the n orbital (pyrazine
5b1u) is higher than those of the other orbitals. However, the
corresponding experimental results are rather few. Onlyâ(E)
observed for pyrazine 5b1u seems greater than the value for
benzene 3e1u at 14-15 eV.

σ and n ionizations show a difference in partial cross sections
in the region of 25-32 eV whereσ orbitals ionize more to the
kπ channel than to thekσ channel (Figure 7), which is consistent
with the results for benzene (3e1u) obtained by Wilhelmy et al.44

and Venuti et al.45 In contrast, thekσ channel is calculated to
be more favored in n ionization for the entire energy range.
This difference betweenσ and n in the partial cross sections is
also observed for 3e2g-type ionization in the same energy region
(not shown).

On the basis of the partial cross sections, we conclude that
there are clearly n-subgroups for 3e1u-type ionizations as well
as 3e2g-type ionizations. The missing nf σ* (C-H*) ionization
is the origin for the deviation of n fromσ in the partial cross
section near the threshold.

4. Conclusion

We have calculated asymmetry parameters as functions of
photoelectron kinetic energy for ionization from various orbitals
of heteroaromatic molecules. The calculations have well repro-
duced observedâ(E), especially betweenE ) 0 and 16 eV.
Between 0 and 1 eV,â(E) for all orbitals but pyrimidine 7b2
show increases, which has been explained by the energy
variation of the Coulomb phase. The energy variation of the
Coulomb phase affectsâ(E) through the interference terms of
Al(E), l g 1 of eq 7, and the relevant interference term isA1(E)
or A2(E) at 0.1 eV, due to the centrifugal barrier. Above 1 eV,
â(E) for π orbitals increase more rapidly than anticipated by
this simple model. This difference is ascribed to the behavior
of A0(E) that is negative near the threshold, analogously with
atomic 3dxz f kpx single channel ionization via the transition
dipole along thez axis, and then becomes positive forE > 5
eV as a result of interference between thekpx andkpz scattering
wave functions. In ionization fromσ and n orbitals above 2
eV, the simple model is completely disrupted by the shape
resonances. This disruption is understood by the behavior of
A1(E) andA2(E). TheseAl(E) terms forσ and n almost vanish
when the energy approaches the lowest resonant state of1, 2,
4, or 5 around 5-7 eV, because the resonance enhances the
contribution of a certain higher angular momentum outgoing
wave and suppress those of the wavesl e 3. Because the wave
functions for resonant states, including3, 6, and7, are undirected
in the molecular plane, and the transition dipole is parallel to
the molecular plane,â(E) is close to zero forE e 10 eV, where
these resonant states are the dominant ionization channels.
AlthoughA3(E) or A4(E) appears where two resonant states with
different angular momenta are relevant, these terms andA0(E)
cancel out each other to makeâ(E) nearly zero.

Keller et al.3 discriminated various orbital types, including
π, σ, and n orbitals, on the basis of the difference inâ(E)
between photoelectron energies 2 and 10 eV. The selected

Figure 7. Asymmetry parameters as functions of photon energy for
(a) benzene 3e1u, and corresponding orbitals of (b) pyridine and (c, d)
pyrazine [upper panels]. Experimental values are cited from Carlson
et al. (1987) (O) and Baltzer et al. (1997) (b) for benzene and from
Piancastelli et al. (1983) for pyrazine (b). The size of symbol represents
the typical experimental error inâ. Partial channel cross section divided
by degeneracy:g ) 4 for e1u andg ) 2 for the other orbitals [lower
panels]. Bold lines indicate theσ and n ionizations to thekσ channel.
Thin lines indicate the ionization to thekπ channel. The numbers
indicate the resonant states in Table 2.

TABLE 6: Major Al and ¥l-l+ Values at E ) 0.1 eV for
Benzene 3e1u and Related Ionizations

orbital A0 A1 ¥0,2

σ
benzene 3e1u 0.63 1.16 0.59
pyridine 6b2 0.64 1.17 0.58
pyrazine 4b2u 0.65 1.15 0.58

n
pyrazine 5b1u 0.64 1.00 0.57

â(E) ≈ A0 + A1 sin(η0(E) - η2(E)) (30)
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energies were rather arbitrary. The near threshold behavior of
â(E) (Tables 3, 4, and 6) would be an alternative measure for
distinguishing the orbital types. For instance, theâ(E) near
threshold (E ≈ 1 eV) is different among 1e1g, 3e1u, and 3e2g

types of orbital in the present calculation, and in the experiment
for π and n orbitals of heteroaromatic molecules. This can be
further examined by measurement ofâ(E) for the corresponding
σ orbitals of azabenzene. Although there is little difference
betweenσ and n in â(E), the partial cross sections ofkσ
continuum are different between them. The partial cross section
has never been observed for gas phase molecules; however, the
ân̂(E) or the ratio of thekσ partial cross section to the total can
be observed by time-resolved photoelectron spectroscopy40 or
infrared-VUV photoionization spectroscopy from a singleJ
level.41 The total cross section should also reflect the difference
at resonance, because resonant ionizations intokσ continuum
dominate the total.
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Appendix: Derivation of Equation 24

In one-axis approximation, doubly differential cross sections
are written as

where ΩM is the Euler angle of molecular orientation with
respect to the laboratory frame andF is the distribution function.
F(ΩM) can be expanded in terms the rotational matrix46 as

MF spherical harmonics are transformed by the rotational
matrices into the laboratory frame

Substituting (32) and (33) into (31) and integrating overΩM,
we obtain

By parallel ionization, residual ions distribute in the squared
cosine form

whereN ) x8π2 is the normalization factor ofF(ΩM). We can
see thatd000 ) N andd200 ) 2N; thus,

From the last equation,â ) â20
MF/â00

MF × 2/x5.

Supporting Information Available: Table S1 containing
ionization potentials used for calculations. Table S2 lists the
muffin-tin radius and constant potentialVII . Figure S1 shows
HF/4-31G molecular orbitals. This material is available free of
charge via the Internet at http://pubs.acs.org.
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